Find Best Actions
def find_best_actions(
targets: dict[str, float],
actionable: list[str],
fixed: dict[str, list[float]] = \{\},
constraints: dict[str, tuple] = \{\},
data: pd.DataFrame = None,
target_importance: dict[str, float] = \{\}) -> pd.DataFrame
Get the optimal actions for a given set of target outcomes.
Arguments:
targetsdict[str, float] - A dictionary representing the target outcomes.actionablelist[str] - A list of actionable nodes.fixeddict[str, float] - A dictionary representing the fixed nodes.constraintsdict[str, tuple] - A dictionary representing the constraints.datapd.DataFrame - A dataframe representing the data.target_importancedict[str, float] - A dictionary representing the target importance.
Returns:
dict- A dictionary representing the optimal actions.
Example:
model.optimal_actions( ... {"x": 0.5}, ... ["x"], ... {"y": 0.5}