Find Best Actions
def find_best_actions(
targets: dict[str, float],
actionable: list[str],
fixed: dict[str, list[float]] = \{\},
constraints: dict[str, tuple] = \{\},
data: pd.DataFrame = None,
target_importance: dict[str, float] = \{\}) -> pd.DataFrame
Get the optimal actions for a given set of target outcomes.
Arguments:
targets
dict[str, float] - A dictionary representing the target outcomes.actionable
list[str] - A list of actionable nodes.fixed
dict[str, float] - A dictionary representing the fixed nodes.constraints
dict[str, tuple] - A dictionary representing the constraints.data
pd.DataFrame - A dataframe representing the data.target_importance
dict[str, float] - A dictionary representing the target importance.
Returns:
dict
- A dictionary representing the optimal actions.
Example:
model.optimal_actions( ... {"x": 0.5}, ... ["x"], ... {"y": 0.5}